Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Nature ; 628(8009): 863-871, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570687

RESUMO

Vertebrate organs require locally adapted blood vessels1,2. The gain of such organotypic vessel specializations is often deemed to be molecularly unrelated to the process of organ vascularization. Here, opposing this model, we reveal a molecular mechanism for brain-specific angiogenesis that operates under the control of Wnt7a/b ligands-well-known blood-brain barrier maturation signals3-5. The control mechanism relies on Wnt7a/b-dependent expression of Mmp25, which we find is enriched in brain endothelial cells. CRISPR-Cas9 mutagenesis in zebrafish reveals that this poorly characterized glycosylphosphatidylinositol-anchored matrix metalloproteinase is selectively required in endothelial tip cells to enable their initial migration across the pial basement membrane lining the brain surface. Mechanistically, Mmp25 confers brain invasive competence by cleaving meningeal fibroblast-derived collagen IV α5/6 chains within a short non-collagenous region of the central helical part of the heterotrimer. After genetic interference with the pial basement membrane composition, the Wnt-ß-catenin-dependent organotypic control of brain angiogenesis is lost, resulting in properly patterned, yet blood-brain-barrier-defective cerebrovasculatures. We reveal an organ-specific angiogenesis mechanism, shed light on tip cell mechanistic angiodiversity and thereby illustrate how organs, by imposing local constraints on angiogenic tip cells, can select vessels matching their distinctive physiological requirements.


Assuntos
Membrana Basal , Barreira Hematoencefálica , Encéfalo , Colágeno Tipo IV , Células Endoteliais , Neovascularização Fisiológica , Peixe-Zebra , Animais , Encéfalo/citologia , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/citologia , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Membrana Basal/metabolismo , Colágeno Tipo IV/metabolismo , Proteínas Wnt/metabolismo , Sistemas CRISPR-Cas/genética , Humanos , Especificidade de Órgãos , Via de Sinalização Wnt , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Movimento Celular , Meninges/citologia , Meninges/irrigação sanguínea , Meninges/metabolismo
2.
BMC Biol ; 22(1): 51, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414014

RESUMO

BACKGROUND: Lymphangiogenesis, the formation of lymphatic vessels, is tightly linked to the development of the venous vasculature, both at the cellular and molecular levels. Here, we identify a novel role for Sorbs1, the founding member of the SoHo family of cytoskeleton adaptor proteins, in vascular and lymphatic development in the zebrafish. RESULTS: We show that Sorbs1 is required for secondary sprouting and emergence of several vascular structures specifically derived from the axial vein. Most notably, formation of the precursor parachordal lymphatic structures is affected in sorbs1 mutant embryos, severely impacting the establishment of the trunk lymphatic vessel network. Interestingly, we show that Sorbs1 interacts with the BMP pathway and could function outside of Vegfc signaling. Mechanistically, Sorbs1 controls FAK/Src signaling and subsequently impacts on the cytoskeleton processes regulated by Rac1 and RhoA GTPases. Inactivation of Sorbs1 altered cell-extracellular matrix (ECM) contacts rearrangement and cytoskeleton dynamics, leading to specific defects in endothelial cell migratory and adhesive properties. CONCLUSIONS: Overall, using in vitro and in vivo assays, we identify Sorbs1 as an important regulator of venous and lymphatic angiogenesis independently of the Vegfc signaling axis. These results provide a better understanding of the complexity found within context-specific vascular and lymphatic development.


Assuntos
Vasos Linfáticos , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Vasos Linfáticos/metabolismo , Linfangiogênese/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Citoesqueleto/metabolismo
3.
Brain ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306655

RESUMO

Respiratory infection with SARS-CoV-2 causes systemic vascular inflammation and cognitive impairment. We sought to identify the underlying mechanisms mediating cerebrovascular dysfunction and inflammation following mild respiratory SARS-CoV-2 infection. To this end, we conduced unbiased transcriptional analysis to identify brain endothelial cell signaling pathways dysregulated by mouse adapted SARS-CoV-2 MA10 in aged immunocompetent C57Bl/6 mice in vivo. This analysis revealed significant suppression of Wnt/ß-catenin signaling, a critical regulator of blood-brain barrier (BBB) integrity. We therefore hypothesized that enhancing cerebrovascular Wnt/ß-catenin activity would offer protection against BBB permeability, neuroinflammation, and neurological signs in acute infection. Indeed, we found that delivery of cerebrovascular-targeted, engineered Wnt7a ligands protected BBB integrity, reduced T cell infiltration of the brain, and reduced microglial activation in SARS-CoV-2 infection. Importantly, this strategy also mitigated SARS-CoV-2 induced deficits in the novel object recognition assay for learning and memory and the pole descent task for bradykinesia. These observations suggest that enhancement of Wnt/ß-catenin signaling or its downstream effectors could be potential interventional strategies for restoring cognitive health following viral infections.

4.
iScience ; 26(12): 108364, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38025786

RESUMO

Prdm12 is a transcriptional regulator essential for the emergence of the somatic nociceptive lineage during sensory neurogenesis. The exact mechanisms by which Prdm12 promotes nociceptor development remain, however, poorly understood. Here, we report that the trigeminal and dorsal root ganglia hypoplasia induced by the loss of Prdm12 involves Bax-dependent apoptosis and that it is accompanied by the ectopic expression of the visceral sensory neuron determinants Phox2a and Phox2b, which is, however, not sufficient to impose a complete fate switch in surviving somatosensory neurons. Mechanistically, our data reveal that Prdm12 is required from somatosensory neural precursors to early post-mitotic differentiating nociceptive neurons to repress Phox2a/b and that its repressive function is context dependent. Together, these findings reveal that besides its essential role in nociceptor survival during development, Prdm12 also promotes nociceptor fate via an additional mechanism, by preventing precursors from engaging into an alternate Phox2 driven visceral neuronal type differentiation program.

5.
Front Mol Neurosci ; 16: 1196504, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396787

RESUMO

Unlike mammals, adult zebrafish are able to fully regenerate axons and functionally recover from neuronal damage in the mature central nervous system (CNS). Decades of research have tried to identify the mechanisms behind their spontaneous regenerative capacity, but the exact underlying pathways and molecular drivers remain to be fully elucidated. By studying optic nerve injury-induced axonal regrowth of adult zebrafish retinal ganglion cells (RGCs), we previously reported transient dendritic shrinkage and changes in the distribution and morphology of mitochondria in the different neuronal compartments throughout the regenerative process. These data suggest that dendrite remodeling and temporary changes in mitochondrial dynamics contribute to effective axonal and dendritic repair upon optic nerve injury. To further elucidate these interactions, we here present a novel adult zebrafish microfluidic model in which we can demonstrate compartment-specific alterations in resource allocation in real-time at single neuron level. First, we developed a pioneering method that enables to isolate and culture adult zebrafish retinal neurons in a microfluidic setup. Notably, with this protocol, we report on a long-term adult primary neuronal culture with a high number of surviving and spontaneously outgrowing mature neurons, which was thus far only very limitedly described in literature. By performing time-lapse live cell imaging and kymographic analyses in this setup, we can explore changes in dendritic remodeling and mitochondrial motility during spontaneous axonal regeneration. This innovative model system will enable to discover how redirecting intraneuronal energy resources supports successful regeneration in the adult zebrafish CNS, and might facilitate the discovery of new therapeutic targets to promote neuronal repair in humans.

6.
Elife ; 122023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37191285

RESUMO

Fenestrated and blood-brain barrier (BBB)-forming endothelial cells constitute major brain capillaries, and this vascular heterogeneity is crucial for region-specific neural function and brain homeostasis. How these capillary types emerge in a brain region-specific manner and subsequently establish intra-brain vascular heterogeneity remains unclear. Here, we performed a comparative analysis of vascularization across the zebrafish choroid plexuses (CPs), circumventricular organs (CVOs), and retinal choroid, and show common angiogenic mechanisms critical for fenestrated brain capillary formation. We found that zebrafish deficient for Gpr124, Reck, or Wnt7aa exhibit severely impaired BBB angiogenesis without any apparent defect in fenestrated capillary formation in the CPs, CVOs, and retinal choroid. Conversely, genetic loss of various Vegf combinations caused significant disruptions in Wnt7/Gpr124/Reck signaling-independent vascularization of these organs. The phenotypic variation and specificity revealed heterogeneous endothelial requirements for Vegfs-dependent angiogenesis during CP and CVO vascularization, identifying unexpected interplay of Vegfc/d and Vegfa in this process. Mechanistically, expression analysis and paracrine activity-deficient vegfc mutant characterization suggest that endothelial cells and non-neuronal specialized cell types present in the CPs and CVOs are major sources of Vegfs responsible for regionally restricted angiogenic interplay. Thus, brain region-specific presentations and interplay of Vegfc/d and Vegfa control emergence of fenestrated capillaries, providing insight into the mechanisms driving intra-brain vascular heterogeneity and fenestrated vessel formation in other organs.


Assuntos
Células Endoteliais , Peixe-Zebra , Animais , Barreira Hematoencefálica/fisiologia , Encéfalo/irrigação sanguínea , Capilares , Células Endoteliais/fisiologia , Neovascularização Fisiológica/genética , Peixe-Zebra/genética
7.
Nat Commun ; 13(1): 7075, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36400774

RESUMO

Resistance to African trypanosomes in humans relies in part on the high affinity targeting of a trypanosome lytic factor 1 (TLF1) to a trypanosome haptoglobin-hemoglobin receptor (HpHbR). While TLF1 avoidance by the inactivation of HpHbR contributes to Trypanosoma brucei gambiense human infectivity, the evolutionary trade-off of this adaptation is unknown, as the physiological function of the receptor remains to be elucidated. Here we show that uptake of hemoglobin via HpHbR constitutes the sole heme import pathway in the trypanosome bloodstream stage. T. b. gambiense strains carrying the inactivating mutation in HpHbR, as well as genetically engineered T. b. brucei HpHbR knock-out lines show only trace levels of intracellular heme and lack hemoprotein-based enzymatic activities, thereby providing an uncommon example of aerobic parasitic proliferation in the absence of heme. We further show that HpHbR facilitates the developmental progression from proliferating long slender forms to cell cycle-arrested stumpy forms in T. b. brucei. Accordingly, T. b. gambiense was found to be poorly competent for slender-to-stumpy differentiation unless a functional HpHbR receptor derived from T. b. brucei was genetically restored. Altogether, we identify heme-deficient metabolism and disrupted cellular differentiation as two distinct HpHbR-dependent evolutionary trade-offs for T. b. gambiense human infectivity.


Assuntos
Lipoproteínas HDL , Trypanosoma brucei gambiense , Humanos , Trypanosoma brucei gambiense/genética , Trypanosoma brucei gambiense/metabolismo , Lipoproteínas HDL/metabolismo , Evolução Biológica , Heme/metabolismo , Diferenciação Celular/genética
8.
Hepatol Commun ; 6(11): 3083-3097, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36017776

RESUMO

Hepatic cysts are fluid-filled lesions in the liver that are estimated to occur in 5% of the population. They may cause hepatomegaly and abdominal pain. Progression to secondary fibrosis, cirrhosis, or cholangiocarcinoma can lead to morbidity and mortality. Previous studies of patients and rodent models have associated hepatic cyst formation with increased proliferation and fluid secretion in cholangiocytes, which are partially due to impaired primary cilia. Congenital hepatic cysts are thought to originate from faulty bile duct development, but the underlying mechanisms are not fully understood. In a forward genetic screen, we identified a zebrafish mutant that developed hepatic cysts during larval stages. The cyst formation was not due to changes in biliary cell proliferation, bile secretion, or impairment of primary cilia. Instead, time-lapse live imaging data showed that the mutant biliary cells failed to form interconnecting bile ducts because of defects in motility and protrusive activity. Accordingly, immunostaining revealed a disorganized actin and microtubule cytoskeleton in the mutant biliary cells. By whole-genome sequencing, we determined that the cystic phenotype in the mutant was caused by a missense mutation in the furinb gene, which encodes a proprotein convertase. The mutation altered Furinb localization and caused endoplasmic reticulum (ER) stress. The cystic phenotype could be suppressed by treatment with the ER stress inhibitor 4-phenylbutyric acid and exacerbated by treatment with the ER stress inducer tunicamycin. The mutant liver also exhibited increased mammalian target of rapamycin (mTOR) signaling. Treatment with mTOR inhibitors halted cyst formation at least partially through reducing ER stress. Conclusion: Our study has established a vertebrate model for studying hepatic cystogenesis and illustrated the contribution of ER stress in the disease pathogenesis.


Assuntos
Cistos , Peixe-Zebra , Animais , Peixe-Zebra/genética , Pró-Proteína Convertases/genética , Mutação de Sentido Incorreto/genética , Tunicamicina , Actinas/genética , Modelos Animais de Doenças , Fígado/patologia , Cistos/genética , Serina-Treonina Quinases TOR/genética , Mamíferos
9.
Cell Rep ; 39(9): 110902, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35649360

RESUMO

Within the central nervous system, Wnt7a/b are unambiguously discriminated from other Wnt ligands by an endothelial receptor complex made of the glycosylphosphatidylinositol (GPI)-anchored Reck and the adhesion G protein-coupled receptor (GPCR) Gpr124. Reck is a Wnt7a/b-specific receptor, while Gpr124 facilitates the delivery of Reck-bound Wnt7a/b ligands to Frizzled, through partially characterized mechanisms. We report that, in zebrafish, the Gpr124-Frizzled interactions are dominated by intracellular scaffolds that exploit the striking molecular mimicry between Gpr124 and Frizzled intracellular domains (ICDs): an internal Dvl-binding motif and a C-terminal ETTV motif that recruits Dlg4 and Magi3. By contrast, mammalian Gpr124 receptors exhibit an ICD-independent interaction mechanism governed by species-specific attributes of their transmembrane and extracellular domains. This mechanism seemingly evolved to replace the Dvl-mediated mechanism. By contrasting zebrafish, mouse, and human Gpr124, this study provides insights into the evolution of Gpr124/Reck function across the vertebrate clade, a receptor complex uniquely implicated in Wnt ligand-specific cellular responses.


Assuntos
Receptores Acoplados a Proteínas G , Via de Sinalização Wnt , Animais , Sistema Nervoso Central , Humanos , Ligantes , Camundongos , Receptores Acoplados a Proteínas G/metabolismo , Peixe-Zebra
10.
Science ; 375(6582): eabm4459, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35175798

RESUMO

The blood-brain barrier (BBB) protects the central nervous system (CNS) from harmful blood-borne factors. Although BBB dysfunction is a hallmark of several neurological disorders, therapies to restore BBB function are lacking. An attractive strategy is to repurpose developmental BBB regulators, such as Wnt7a, into BBB-protective agents. However, safe therapeutic use of Wnt ligands is complicated by their pleiotropic Frizzled signaling activities. Taking advantage of the Wnt7a/b-specific Gpr124/Reck co-receptor complex, we genetically engineered Wnt7a ligands into BBB-specific Wnt activators. In a "hit-and-run" adeno-associated virus-assisted CNS gene delivery setting, these new Gpr124/Reck-specific agonists protected BBB function, thereby mitigating glioblastoma expansion and ischemic stroke infarction. This work reveals that the signaling specificity of Wnt ligands is adjustable and defines a modality to treat CNS disorders by normalizing the BBB.


Assuntos
Barreira Hematoencefálica/fisiologia , Proteínas Ligadas por GPI/agonistas , Glioblastoma/terapia , Receptores Acoplados a Proteínas G/agonistas , Acidente Vascular Cerebral/terapia , Proteínas Wnt/genética , Via de Sinalização Wnt , Animais , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Receptores Frizzled/metabolismo , Glioblastoma/metabolismo , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese , Sistema Nervoso/embriologia , Engenharia de Proteínas , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Acidente Vascular Cerebral/metabolismo , Proteínas Wnt/química , Proteínas Wnt/metabolismo , Xenopus laevis , Peixe-Zebra
11.
Pain ; 163(8): e927-e941, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34961757

RESUMO

ABSTRACT: Prdm12 is a conserved epigenetic transcriptional regulator that displays restricted expression in nociceptors of the developing peripheral nervous system. In mice, Prdm12 is required for the development of the entire nociceptive lineage. In humans, PRDM12 mutations cause congenital insensitivity to pain, likely because of the loss of nociceptors. Prdm12 expression is maintained in mature nociceptors suggesting a yet-to-be explored functional role in adults. Using Prdm12 inducible conditional knockout mouse models, we report that in adult nociceptors Prdm12 is no longer required for cell survival but continues to play a role in the transcriptional control of a network of genes, many of them encoding ion channels and receptors. We found that disruption of Prdm12 alters the excitability of dorsal root ganglion neurons in culture. Phenotypically, we observed that mice lacking Prdm12 exhibit normal responses to thermal and mechanical nociceptive stimuli but a reduced response to capsaicin and hypersensitivity to formalin-induced inflammatory pain. Together, our data indicate that Prdm12 regulates pain-related behavior in a complex way by modulating gene expression in adult nociceptors and controlling their excitability. The results encourage further studies to assess the potential of Prdm12 as a target for analgesic development.


Assuntos
Proteínas de Transporte , Gânglios Espinais , Proteínas do Tecido Nervoso , Nociceptores , Animais , Proteínas de Transporte/genética , Gânglios Espinais/metabolismo , Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Nociceptores/fisiologia , Dor/genética , Dor/metabolismo
12.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502121

RESUMO

Sjögren's syndrome (SS) is an exocrinopathy characterized by the hypofunction of salivary glands (SGs). Aquaporin-5 (AQP5); a water channel involved in saliva formation; is aberrantly distributed in SS SG acini and contributes to glandular dysfunction. We aimed to investigate the role of ezrin in AQP5 mislocalization in SS SGs. The AQP5-ezrin interaction was assessed by immunoprecipitation and proteome analysis and by proximity ligation assay in immortalized human SG cells. We demonstrated, for the first time, an interaction between ezrin and AQP5. A model of the complex was derived by computer modeling and in silico docking; suggesting that AQP5 interacts with the ezrin FERM-domain via its C-terminus. The interaction was also investigated in human minor salivary gland (hMSG) acini from SS patients (SICCA-SS); showing that AQP5-ezrin complexes were absent or mislocalized to the basolateral side of SG acini rather than the apical region compared to controls (SICCA-NS). Furthermore, in SICCA-SS hMSG acinar cells, ezrin immunoreactivity was decreased at the acinar apical region and higher at basal or lateral regions, accounting for altered AQP5-ezrin co-localization. Our data reveal that AQP5-ezrin interactions in human SGs could be involved in the regulation of AQP5 trafficking and may contribute to AQP5-altered localization in SS patients.


Assuntos
Aquaporina 5/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Regulação da Expressão Gênica , Glândulas Salivares/metabolismo , Síndrome de Sjogren/genética , Síndrome de Sjogren/metabolismo , Sequência de Aminoácidos , Aquaporina 5/química , Proteínas de Transporte , Proteínas do Citoesqueleto/química , Humanos , Modelos Moleculares , Ligação Proteica , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Transporte Proteico , Síndrome de Sjogren/patologia , Relação Estrutura-Atividade
13.
Cells ; 10(8)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34440877

RESUMO

Saliva secretion requires effective translocation of aquaporin 5 (AQP5) water channel to the salivary glands (SGs) acinar apical membrane. Patients with Sjögren's syndrome (SS) display abnormal AQP5 localization within acinar cells from SGs that correlate with sicca manifestation and glands hypofunction. Several proteins such as Prolactin-inducible protein (PIP) may regulate AQP5 trafficking as observed in lacrimal glands from mice. However, the role of the AQP5-PIP complex remains poorly understood. In the present study, we show that PIP interacts with AQP5 in vitro and in mice as well as in human SGs and that PIP misexpression correlates with an altered AQP5 distribution at the acinar apical membrane in PIP knockout mice and SS hMSG. Furthermore, our data show that the protein-protein interaction involves the AQP5 C-terminus and the N-terminal of PIP (one molecule of PIP per AQP5 tetramer). In conclusion, our findings highlight for the first time the role of PIP as a protein controlling AQP5 localization in human salivary glands but extend beyond due to the PIP-AQP5 interaction described in lung and breast cancers.


Assuntos
Aquaporina 5/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Glândulas Salivares/metabolismo , Síndrome de Sjogren/metabolismo , Células Acinares/metabolismo , Animais , Aquaporina 5/química , Aquaporina 5/genética , Sítios de Ligação , Linhagem Celular , Humanos , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Knockout , Ligação Proteica , Síndrome de Sjogren/genética
14.
EMBO Rep ; 22(2): e48961, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33512764

RESUMO

Endothelial tip cells are essential for VEGF-induced angiogenesis, but underlying mechanisms are elusive. The Ena/VASP protein family, consisting of EVL, VASP, and Mena, plays a pivotal role in axon guidance. Given that axonal growth cones and endothelial tip cells share many common features, from the morphological to the molecular level, we investigated the role of Ena/VASP proteins in angiogenesis. EVL and VASP, but not Mena, are expressed in endothelial cells of the postnatal mouse retina. Global deletion of EVL (but not VASP) compromises the radial sprouting of the vascular plexus in mice. Similarly, endothelial-specific EVL deletion compromises the radial sprouting of the vascular plexus and reduces the endothelial tip cell density and filopodia formation. Gene sets involved in blood vessel development and angiogenesis are down-regulated in EVL-deficient P5-retinal endothelial cells. Consistently, EVL deletion impairs VEGF-induced endothelial cell proliferation and sprouting, and reduces the internalization and phosphorylation of VEGF receptor 2 and its downstream signaling via the MAPK/ERK pathway. Together, we show that endothelial EVL regulates sprouting angiogenesis via VEGF receptor-2 internalization and signaling.


Assuntos
Moléculas de Adesão Celular/fisiologia , Células Endoteliais , Neovascularização Fisiológica , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Células Endoteliais/metabolismo , Camundongos , Morfogênese , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
15.
iScience ; 23(9): 101476, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32889430

RESUMO

Human innate immunity to Trypanosoma brucei involves the trypanosome C-terminal kinesin TbKIFC1, which transports internalized trypanolytic factor apolipoprotein L1 (APOL1) within the parasite. We show that TbKIFC1 preferentially associates with cholesterol-containing membranes and is indispensable for mammalian infectivity. Knockdown of TbKIFC1 did not affect trypanosome growth in vitro but rendered the parasites unable to infect mice unless antibody synthesis was compromised. Surface clearance of Variant Surface Glycoprotein (VSG)-antibody complexes was far slower in these cells, which were more susceptible to capture by macrophages. This phenotype was not due to defects in VSG expression or trafficking but to decreased VSG mobility in a less fluid, stiffer surface membrane. This change can be attributed to increased cholesterol level in the surface membrane in TbKIFC1 knockdown cells. Clearance of surface-bound antibodies by T. brucei is therefore essential for infectivity and depends on high membrane fluidity maintained by the cholesterol-trafficking activity of TbKIFC1.

16.
Arterioscler Thromb Vasc Biol ; 39(7): 1432-1447, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31242033

RESUMO

Objective- The Wnt/ß-catenin pathway orchestrates development of the blood-brain barrier, but the downstream mechanisms involved at different developmental windows and in different central nervous system (CNS) tissues have remained elusive. Approach and Results- Here, we create a new mouse model allowing spatiotemporal investigations of Wnt/ß-catenin signaling by induced overexpression of Axin1, an inhibitor of ß-catenin signaling, specifically in endothelial cells ( Axin1 iEC- OE). AOE (Axin1 overexpression) in Axin1 iEC- OE mice at stages following the initial vascular invasion of the CNS did not impair angiogenesis but led to premature vascular regression followed by progressive dilation and inhibition of vascular maturation resulting in forebrain-specific hemorrhage 4 days post-AOE. Analysis of the temporal Wnt/ß-catenin driven CNS vascular development in zebrafish also suggested that Axin1 iEC- OE led to CNS vascular regression and impaired maturation but not inhibition of ongoing angiogenesis within the CNS. Transcriptomic profiling of isolated, ß-catenin signaling-deficient endothelial cells during early blood-brain barrier-development (E11.5) revealed ECM (extracellular matrix) proteins as one of the most severely deregulated clusters. Among the 20 genes constituting the forebrain endothelial cell-specific response signature, 8 ( Adamtsl2, Apod, Ctsw, Htra3, Pglyrp1, Spock2, Ttyh2, and Wfdc1) encoded bona fide ECM proteins. This specific ß-catenin-responsive ECM signature was also repressed in Axin1 iEC- OE and endothelial cell-specific ß-catenin-knockout mice ( Ctnnb1-KOiEC) during initial blood-brain barrier maturation (E14.5), consistent with an important role of Wnt/ß-catenin signaling in orchestrating the development of the forebrain vascular ECM. Conclusions- These results suggest a novel mechanism of establishing a CNS endothelium-specific ECM signature downstream of Wnt-ß-catenin that impact spatiotemporally on blood-brain barrier differentiation during forebrain vessel development. Visual Overview- An online visual overview is available for this article.


Assuntos
Matriz Extracelular/fisiologia , Prosencéfalo/irrigação sanguínea , Via de Sinalização Wnt/fisiologia , beta Catenina/fisiologia , Animais , Proteína Axina/fisiologia , Barreira Hematoencefálica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia , Remodelação Vascular , Peixe-Zebra
17.
Ann N Y Acad Sci ; 1456(1): 5-25, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31168816

RESUMO

The adhesion class of G protein-coupled receptors (GPCRs) is the second largest family of GPCRs (33 members in humans). Adhesion GPCRs (aGPCRs) are defined by a large extracellular N-terminal region that is linked to a C-terminal seven transmembrane (7TM) domain via a GPCR-autoproteolysis inducing (GAIN) domain containing a GPCR proteolytic site (GPS). Most aGPCRs undergo autoproteolysis at the GPS motif, but the cleaved fragments stay closely associated, with the N-terminal fragment (NTF) bound to the 7TM of the C-terminal fragment (CTF). The NTFs of most aGPCRs contain domains known to be involved in cell-cell adhesion, while the CTFs are involved in classical G protein signaling, as well as other intracellular signaling. In this workshop report, we review the most recent findings on the biology, signaling mechanisms, and physiological functions of aGPCRs.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Animais , Humanos , Receptores Acoplados a Proteínas G/química
18.
Biotechniques ; 66(6): 295-302, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31039627

RESUMO

CRISPR/Cas9 technology has evolved as the most powerful approach to generate genetic models both for fundamental and preclinical research. Despite its apparent simplicity, the outcome of a genome-editing experiment can be substantially impacted by technical parameters and biological considerations. Here, we present guidelines and tools to optimize CRISPR/Cas9 genome-targeting efficiency and specificity. The nature of the target locus, the design of the single guide RNA and the choice of the delivery method should all be carefully considered prior to a genome-editing experiment. Different methods can also be used to detect off-target cleavages and decrease the risk of unwanted mutations. Together, these optimized tools and proper controls are essential to the assessment of CRISPR/Cas9 genome-editing experiments.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Animais , Técnicas de Inativação de Genes/métodos , Loci Gênicos , Células HEK293 , Humanos , RNA Guia de Cinetoplastídeos/genética , Peixe-Zebra/genética
19.
Elife ; 82019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30932814

RESUMO

The circumventricular organs (CVOs) in the central nervous system (CNS) lack a vascular blood-brain barrier (BBB), creating communication sites for sensory or secretory neurons, involved in body homeostasis. Wnt/ß-catenin signaling is essential for BBB development and maintenance in endothelial cells (ECs) in most CNS vessels. Here we show that in mouse development, as well as in adult mouse and zebrafish, CVO ECs rendered Wnt-reporter negative, suggesting low level pathway activity. Characterization of the subfornical organ (SFO) vasculature revealed heterogenous claudin-5 (Cldn5) and Plvap/Meca32 expression indicative for tight and leaky vessels, respectively. Dominant, EC-specific ß-catenin transcription in mice, converted phenotypically leaky into BBB-like vessels, by augmenting Cldn5+vessels, stabilizing junctions and by reducing Plvap/Meca32+ and fenestrated vessels, resulting in decreased tracer permeability. Endothelial tightening augmented neuronal activity in the SFO of water restricted mice. Hence, regulating the SFO vessel barrier may influence neuronal function in the context of water homeostasis.


Assuntos
Comportamento de Ingestão de Líquido , Órgão Subfornical/fisiologia , Água/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Animais , Permeabilidade Capilar , Células Endoteliais/fisiologia , Homeostase , Camundongos Endogâmicos C57BL , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
20.
PLoS Genet ; 14(12): e1007845, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30543681

RESUMO

Nucleoporins build the nuclear pore complex (NPC), which, as sole gate for nuclear-cytoplasmic exchange, is of outmost importance for normal cell function. Defects in the process of nucleocytoplasmic transport or in its machinery have been frequently described in human diseases, such as cancer and neurodegenerative disorders, but only in a few cases of developmental disorders. Here we report biallelic mutations in the nucleoporin NUP88 as a novel cause of lethal fetal akinesia deformation sequence (FADS) in two families. FADS comprises a spectrum of clinically and genetically heterogeneous disorders with congenital malformations related to impaired fetal movement. We show that genetic disruption of nup88 in zebrafish results in pleiotropic developmental defects reminiscent of those seen in affected human fetuses, including locomotor defects as well as defects at neuromuscular junctions. Phenotypic alterations become visible at distinct developmental stages, both in affected human fetuses and in zebrafish, whereas early stages of development are apparently normal. The zebrafish phenotypes caused by nup88 deficiency are rescued by expressing wild-type Nup88 but not the disease-linked mutant forms of Nup88. Furthermore, using human and mouse cell lines as well as immunohistochemistry on fetal muscle tissue, we demonstrate that NUP88 depletion affects rapsyn, a key regulator of the muscle nicotinic acetylcholine receptor at the neuromuscular junction. Together, our studies provide the first characterization of NUP88 in vertebrate development, expand our understanding of the molecular events causing FADS, and suggest that variants in NUP88 should be investigated in cases of FADS.


Assuntos
Artrogripose/genética , Genes Letais , Mutação , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Alelos , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Artrogripose/embriologia , Artrogripose/fisiopatologia , Consanguinidade , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Modelos Moleculares , Proteínas Musculares/metabolismo , Junção Neuromuscular/fisiopatologia , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/deficiência , Linhagem , Gravidez , Conformação Proteica , Receptores Nicotínicos/metabolismo , Homologia de Sequência de Aminoácidos , Peixe-Zebra/anormalidades , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...